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Abstract� A new method for performing a nonlinear form of Principal
Component Analysis is proposed� By the use of integral operator kernel
functions� one can e�ciently compute principal components in high�
dimensional feature spaces� related to input space by some nonlinear
map� for instance the space of all possible d�pixel products in images�
We give the derivation of the method and present �rst experimental
results on polynomial feature extraction for pattern recognition�

� Introduction

Principal Component Analysis �PCA� is a basis transformation to diagonalize
an estimate of the covariance matrix of the data xk� k � �� � � � � �� xk � RN �P�

k�� xk � �� de�ned as

C �
�

�

�X

j��

xjx
�

j � ���

The new coordinates in the Eigenvector basis� i	e	 the orthogonal projections
onto the Eigenvectors� are called principal components	

In this paper� we generalize this setting to a nonlinear one of the following
kind	 Suppose we �rst map the data nonlinearly into a feature space F by

� 
 RN � F� x �� X� ���

We will show that even if F has arbitrarily large dimensionality� for certain
choices of �� we can still perform PCA in F 	 This is done by the use of kernel
functions known from support vector machines �Boser� Guyon� � Vapnik� ���	

� Kernel PCA

Assume for the moment that our data mapped into feature space� ��x��� � � � � ��x���

is centered� i	e	
P�

k�� ��xk� � �	 To do PCA for the covariance matrix

�C �
�

�

�X

j��

��xj���xj�
�� ���

we have to �nd Eigenvalues � � � and Eigenvectors V � Fnf�g satisfying
�V � �CV� Substituting ���� we note that all solutions V lie in the span of
��x��� � � � � ��x��	 This implies that we may consider the equivalent equation

����xk� �V� � ���xk� � �CV� for all k � �� � � � � �� ���
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and that there exist coe�cients ��� � � � � �� such that

V �

�X

i��

�i��xi�� ���

Substituting ��� and ��� into ���� and de�ning an �� � matrix K by

Kij 
� ���xi� � ��xj��� ���

we arrive at
��K� � K�

�� ���

where � denotes the column vector with entries ��� � � � � ��	 To �nd solutions of
���� we solve the Eigenvalue problem

��� � K� ���

for nonzero Eigenvalues	 Clearly� all solutions of ��� do satisy ���	 Moreover� it
can be shown that any additional solutions of ��� do not make a di�erence in
the expansion ��� and thus are not interesting for us	

We normalize the solutions �k belonging to nonzero Eigenvalues by requiring
that the corresponding vectors in F be normalized� i	e	 �Vk �Vk� � �� By virtue
of ���� ��� and ���� this translates into

� �

�X

i�j��

�ki �
k
j ���xi� � ��xj�� � ��k �K�k� � �k��

k ��k�� ��

For principal component extraction� we compute projections of the image of a
test point ��x� onto the Eigenvectors Vk in F according to

�Vk � ��x�� �
�X

i��

�ki ���xi� � ��x��� ����

Note that neither ��� nor ���� requires the ��xi� in explicit form � they are
only needed in dot products	 Therefore� we are able to use kernel functions for
computing these dot products without actually performing the map � �Aizerman�
Braverman� � Rozonoer� ���� Boser� Guyon� � Vapnik� ���
 for some choices
of a kernel k�x�y�� it can be shown by methods of functional analysis that there
exists a map � into some dot product space F �possibly of in�nite dimension�
such that k computes the dot product in F 	 Kernels which have successfully been
used in support vector machines �Sch�olkopf� Burges� � Vapnik� ��� include
polynomial kernels

k�x�y� � �x � y�d� ����

radial basis functions k�x�y� � exp
�
�kx� yk���� ���

�
� and sigmoid kernels

k�x�y� � tanh���x � y� �	�	 It can be shown that polynomial kernels of degree
d correspond to a map � into a feature space which is spanned by all products
of d entries of an input pattern� e	g	� for the case of N � �� d � ��

�x � y�� � �x�
�
� x�x�� x�x�� x

�

�
��y�

�
� y�y�� y�y�� y

�

�
��� ����
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Fig� �� PCA with kernel ���� degrees d � �� � � � � 
� ��� points ��xi��� �xi��� were gen�
erated from �xi�� � �xi�

�

�� noise �Gaussian� with standard deviation ����� all �xi�j
were rescaled according to �xi�j �� sgn��xi�j� � j�xi�j j

��d� Displayed are contour lines
of constant value of the �rst principal component� Nonlinear kernels �d � �� extract
features which nicely increase along the direction of main variance in the data� linear
PCA �d � �� does its best in that respect� too� but it is limited to straight directions�

If the patterns are images� we can thus work in the space of all products of d
pixels and thereby take into account higher�order statistics when doing PCA	

Substituting kernel functions for all occurances of ���x� � ��y��� we obtain
the following algorithm for kernel PCA
 we compute the dot product matrix
�cf	 Eq	 ���� Kij � �k�xi�xj��ij � solve ��� by diagonalizing K� normalize the
Eigenvector expansion coe�cients �n by requiring Eq	 ��� and extract principal
components �corresponding to the kernel k� of a test point x by evaluating �cf	
Eq	 ������

�Vn � ��x�� �

�X

i��

�ni k�xi�x�� ����

We should point out that in practise� our algorithm is not equivalent to the
form of nonlinear PCA that can be obtained by explicitely mapping into the
feature space F 
 even though the rank of the dot product matrix will be limited
by the sample size� we may not even be able to compute this matrix� if the
dimensionality is prohibitively high	 For instance� �� � �� pixel input images
and a polynomial degree d � � yield a dimensionality of ����	

To conclude this section� we brie�y mention the case where we drop the
assumption that the ��xi� are centered in F 	 Note that we cannot in general
center the data� as we cannot compute the mean of a set of points that we do
not have in explicit form	 Instead� we have to go through the above algebra
using ���xi� 
� ��xi� � �����

P�
i�� ��xi�� It turns out that the matrix that we

have to diagonalize in that case� call it �K� can be expressed in terms of K as
�Kij � K���K�K�����K��� using the shorthand ����ij 
� ���	 Thus� we have
again reduced the problem to evaluating kernel functions �for the computation
of K�	 A similar equation can be derived for feature extraction �for details� see
Sch�olkopf� Smola� � M�uller� ���	

� Experiments on Feature Extraction

Figure � shows the �rst principal component of a toy data set� extracted by
polynomial kernel PCA	 For an investigation of the utility of kernel PCA fea�
tures for a more realistic problem� we trained a separating hyperplane classi�er
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�Vapnik � Chervonenkis� ���� Cortes � Vapnik� ��� on nonlinear features
extracted from the US postal service �USPS� handwritten digit data base by
kernel PCA	 This database contains ��� examples of dimensionality ���� ����
of them make up the test set	 For computational reasons� we used only a subset
of ���� training examples for the dot product matrix	 Using polynomial kernels
���� of degrees d � �� � � � � �� and extracting the �rst �n �n � �� �� � � � � ��� prin�
cipal components� we found the following	 In the case of linear PCA �d � ���
the best classi�cation performance ��	�� error� is attained for ��� components	
Extracting the same number of nonlinear components �d � �� � � � � �� in all cases
lead to superior performance �around �� error� for details� see Sch�olkopf� Smola�
� M�uller� ���	 In addition� the performance can in the nonlinear case be fur�
ther improved by using a larger number of components �note that there exist
more higher�order features than there are pixels in an image�	 E	g	� using d 
 �
and ���� components� we obtained around �� error� which coincides with the
best result reported for standard nonlinear Support Vector machines �Sch�olkopf�
Burges� � Vapnik� ���	 This result is competitive with convolutional ��layer
neural networks ��	�� were reported by LeCun et al	� ���� it is much better
than linear classi�ers operating directly on the image data �a linear Support Vec�
tor machine achieves �	�� Sch�olkopf� Burges� � Vapnik� ���	 We should add
that our results were obtained without using any prior knowledge about sym�
metries of the problem at hand	 This explains why the performance is inferior
to Virtual Support Vector classi�ers ��	��� Sch�olkopf� Burges� � Vapnik� ����
and Tangent Distance Nearest Neighbour classi�ers ��	��� Simard� LeCun� �
Denker� ���	 We believe that adding e	g	 local translation invariance� be it by
generating �virtual� translated examples or by choosing a suitable kernel� could
further improve the results	

� Discussion

This paper was devoted to the exposition of a new technique for nonlinear prin�
cipal component analysis	 To develop this technique� we made use of a kernel
method which so far only had been used in supervised learning �Vapnik� ���	
Clearly� the kernel method can be applied to any algorithm which can be formu�
lated in terms of dot products exclusively� including for instance k�means and
independent component analysis �see Sch�olkopf� Smola� � M�uller� ��� for more
details�	

In experiments comparing the utility of kernel PCA features for pattern
recognition using a linear classi�er� we found two advantages of nonlinear kernels

�rst� nonlinear principal components a�orded better recognition rates than cor�
responding numbers of linear principal components� and second� the performance
for nonlinear components can be further improved by using more components
than possible in the linear case	

The computational complexity of kernel PCA does not grow with the dimen�
sionality of the feature space that we are implicitely working in	 This makes it
possible to work for instance in the space of all possible d�th order products be�
tween pixels of an image	 As in the variant of standard PCA which diagonalizes
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the dot product matrix �e	g	 Kirby � Sirovich� ���� we have to diagonalize
an � � � matrix �� being the number of examples� or the size of a representa�
tive subset�� with a comparable computational complexity � we only need to
compute kernel functions rather than dot products	 In the subsequent feature
extraction� we have to evaluate the kernel function � times for each extracted
principal component ����� rather than just evaluating one dot product as for a
linear PCA	 Of course� if the dimensionality of the feature space F is ����� this
is still vastly faster than linear principal component extraction in F 	 If F has
very high dimensionality� an approach which �rst nonlinearly maps the patterns
into F and then carries out a standard PCA there will fail	 Kernel PCA deals
with this problem by automatically choosing a subspace of F �with a dimen�
sionality given by the rank of K�� and by providing a means of computing dot
products between vectors in this subspace	 Compared to linear PCA performed
in input space� kernel principal component extraction is thus computationally
more expensive� however� this additional investment can pay back afterwards

we have presented results indicating that in pattern recognition� it is su�cient
to use a linear classi�er� as long as the features extracted are nonlinear	 The
main advantage of linear PCA up to date� however� consists in the possibility to
reconstruct the patterns from their principal components	

Compared to other methods for nonlinear PCA� as autoassociative MLPs
with a bottleneck hidden layer �e	g	 Diamantaras � Kung� ��� or principal
curves �Hastie � Stuetzle� ���� kernel PCA has the advantage that no nonlin�
ear optimization is involved � we only need to solve an Eigenvalue problem as
in the case of standard PCA	 Therefore� we are not in danger of getting trapped
in local minima during during training	 Compared to most neural network type
generalizations of PCA �e	g	 Oja� ����� kernel PCA moreover has the advan�
tage that it provides a better understanding of what kind of nonlinear features
are extracted
 they are principal components in a feature space which is �xed a
priori by choosing a kernel function	 In this sense� the type of nonlinearities that
we are looking for are already speci�ed in advance� however this speci�cation is a
very wide one� it merely selects the �high�dimensional� feature space� but not the
relevant feature subspace
 the latter is done automatically	 In this respect it is
worthwhile to note that by using sigmoid kernels �Sec	 �� we can in fact also ex�
tract features which are of the same type as the ones extracted by MLPs� and the
latter is often considered a nonparametric technique	 With its rather wide class
of admissible nonlinearities� kernel PCA forms a framework comprising various
types of feature extraction systems	 A number of di�erent kernels have already
been used in support vector machines� of polynomial� Gaussian� and sigmoid
type	 They all led to high accuracy classi�ers� and constructed their decision
boundaries �which are hyperplanes in di�erent feature spaces� from almost the
same support vectors �Sch�olkopf� Burges� � Vapnik� ���	 The general question
of how to choose the best kernel for a given problem is yet unsolved� both for
support vector machines and for kernel PCA	

PCA feature extraction has found application in many areas� including noise
reduction� pattern recognition� regression estimation� and image indexing	 In all
cases where taking into account nonlinearities might be bene�cial� kernel PCA
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provides a new tool which can be applied with little computational cost and
possibly substantial performance gains	
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